miércoles, 22 de junio de 2011

Como sumar y Restar los Vectores!! ::

SUMA DE VECTORES



La suma de vectores A y B se obtiene al hacer coincidir el extremo de uno de ellos con el origen del otro; la suma es el vector que va del inicio del primero al extremo del segundo.

Las propiedades de la suma de vectores son:

Propiedad conmutativa







Propiedad de la desigualdad del triángulo




Propiedad asociativa



La suma de vectores se puede realizar de dos formas, la primera es utilizando la ley de los senos y cosenos, la segunda forma es por medio de descomposición de fuerzas. Más adelante hay varios problemas aplicando lo antes dicho.

RESTA DE VECTORES.



Restar el vector B del vector A es equivalente a sumarle el inverso aditivo de B. Para restar vectores se unen en su origen y el vector resta es la unión de sus extremos dibujando el sentido hacia el que se le va a quitar, el paso siguiente es calcular el vector con el mismo procedimiento que en la suma.



RESTA DE VECTORES.



Restar el vector B del vector A es equivalente a sumarle el inverso aditivo de B. Para restar vectores se unen en su origen y el vector resta es la unión de sus extremos dibujando el sentido hacia el que se le va a quitar, el paso siguiente es calcular el vector con el mismo procedimiento que en la suma.

Como lo podemos Graficar,Analiticamente,,Graficamente


Representación grafica de un vector. Dado su origen y su extremo.




C Origen d. Extremo c. Dirección vertical con sentido hacia arriba. Se denota d c

D

Origen f. Extremo e. Dirección inclinada hacia la derecha con sentido ascendente. Se denota f e

E

F

Componentes de un vector grafica y analíticamente. Con ejemplos.




Se llama componentes de un vector, situado ene un sistema de coordenadas, al punto que tiene como abcisas la diferencia de las abcisas y como ordenada la diferencia de las ordenadas de los puntos que conforman el extremo y el origen, en ese orden.

analíticamente:


dados los puntos a (3,4) b (-2,3) c (-4,-3) y d (1,0). Determinar las componentes de cada uno delos siguientes vectores: a) ab b) bc c) cd.

a) ab a (3,4) b (-2,). b-a


Abcisas -2-3 = -5

Ordenadas 3-4 = -1

Elementos del vectOr!!


La Dirección: esta determinada por la recta de soporte y puede ser vertical, horizontal e inclinada u oblicua.


La orientación: o sentido, esta determinada por la flecha y puede ser horizontal hacia la derecha o hacia la izquierda, vertical hacia arriba o hacia abajo e inclinada ascendente o descendente hacia la derecha o hacia la izquierda.


El punto de aplicación: esta determinado por el punto origen del segmento que forma el vector.


La longitud o módulo: es el número positivo que representa la longitud del vector.

Que es un vector??

El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman magnitudes escalares aquellas en que sólo influye su tamaño. Por el contrario, se consideran magnitudes vectoriales aquellas en las que, de alguna manera, influyen la dirección y el sentido en que se aplican.

Como ejemplos de magnitudes escalares se pueden citar la masa de un cuerpo, la temperatura, el volumen, etc.

Cuando se plantea un movimiento no basta con decir cuánto se ha desplazado el móvil, sino que es preciso decir también en qué dirección y sentido ha tenido lugar el movimiento. No son los mismos los efectos de un movimiento de 100 km a partir de un punto si se hace hacia el norte o si se hace en dirección sudoeste, ya que se llegaría a distinto lugar.

Aunque el estudio matemático de los vectores tardó mucho en hacerse formalmente, en la actualidad tiene un gran interés, sobre todo a partir de los estudios de David Hilbert (1862-1943) y Stefan Banach (1892-1945), que hicieron uso de la teoría de espacios vectoriales, aplicándolos a las técnicas del análisis matemático.

Por lo tanto el resultado de nuestra investigación esta enmarcada en los concepto, graficas y ejercicio que a continuación le expondremos.

Definición de Vectores.


En matemáticas, cantidad que tiene magnitud, dirección y sentido al mismo tiempo. Por ejemplo, si una cantidad ordinaria, o escalar, puede ser una distancia de 6 km, una cantidad vectorial sería decir 6 km norte. Los vectores se representan normalmente como segmentos rectilíneos orientados, como B en el diagrama que se muestra a continuación; el punto O es el origen o punto de aplicación del vector y B su extremo. La longitud del segmento es la medida o módulo de la cantidad vectorial, y su dirección es la misma que la del vector.




El uso sencillo de los vectores así como los cálculos utilizando vectores quedan ilustrados en este diagrama, que muestra el movimiento de una barca para atravesar una corriente de agua. El vector a, u A, indica el movimiento de la barca durante un determinado periodo de tiempo si estuviera navegando en aguas tranquilas; el vector b, o $, representa la deriva o empuje de la corriente durante el mismo periodo de tiempo. El recorrido real de la barca, bajo la influencia de su propia propulsión y de la corriente, se representa con el vector c, u B. Utilizando vectores, se puede resolver gráficamente cualquier problema relacionado con el movimiento de un objeto bajo la influencia de varias fuerzas.